


Controller	Area	Network	Prototyping	with	Arduino
by	Wilfried	Voss

	

Published	by

Copperhill	Technologies	Corporation

158	Log	Plain	Road

Greenfield,	MA	01301

USA

	

Copyright	©	2014	by	Copperhill	Technologies	Corporation

	

Cover	Design	by	Copperhill	Technologies	Corporation
	

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as	permitted	under	Sections	107	or	108
of	the	1976	United	States	Copyright	Act,	without	the	prior	written	permission	of	the	Publisher.

	

All	 trademarks	 or	 copyrights	 mentioned	 herein	 are	 the	 possession	 of	 their	 respective	 owners	 and	 Copperhill	Media
makes	no	claim	of	ownership	by	the	mention	of	products	that	contain	these	marks.

	

“Arduino”	is	a	trademark	of	the	Arduino	team.

	

ISBN-10:	1938581172

ISBN-13:	978-1-938581-17-5

	
Disclaimer:	 While	 the	 publisher	 and	 author	 have	 used	 their	 best	 efforts	 in	 preparing	 this	 book,	 they	 make	 no
representations	or	warranties	with	respect	to	the	accuracy	or	completeness	of	the	contents	of	this	book	and	specifically
disclaim	any	implied	warranties	or	merchantability	or	fitness	for	a	particular	purpose.	No	warranty	may	be	created	or
extended	 by	 sales	 representatives	 or	 written	 sales	 materials.	 The	 advice	 and	 strategies	 contained	 herein	may	 not	 be
suitable	for	your	situation.	You	should	consult	with	a	professional	where	appropriate.	Neither	the	publisher	nor	author
shall	be	liable	for	any	loss	or	profit	or	any	other	commercial	damages,	including	but	not	limited	to	special,	incidental,
consequential,	or	other	damages.

	

http://www.copperhilltech.com



	
From	the	Author
	

It	seems	like	a	million	years	since	I	had	a	soldering	iron	in	my	hand	and	that	I	have	been
engaging	 in	my	most	 favorite	programming	activity,	namely	programming	of	embedded
systems.	 In	 the	 past,	 I	 did	 shy	 away	 from	 the	 expenses	 that	 came	 with	 embedded
programming,	 but	 with	 the	 emergence	 of	 inexpensive	 prototyping	 systems	 such	 as	 the
Arduino	or	Raspberry	Pi	this	concern	doesn’t	exist	anymore.

	

Add	 to	 this	 a	 virtually	 non-existing	 learning	 curve.	With	my	Arduino	Uno	 I	 ordered	 a
book	explaining	Arduino	Sketches,	and	I	read	it	for	about	30	minutes	to	scan	through	the
most	 important	 information.	 Then	 it	 took	 maybe	 another	 30	 minutes	 to	 get	 my	 first
application	running.

	

I	 know,	 I	 am	 joining	 the	 enormous	 club	of	Arduino	users	who	made	 and	 expressed	 the
same	 experience,	 but	 that	 doesn’t	 change	 the	 fact	 that	 the	 Arduino	 is	 the	 perfect
environment	for	prototyping	of	embedded	computer	systems.

	

Naturally,	with	my	knowledge	of	all	kinds	of	Controller	Area	Network	topics,	I	was	eager
to	convert	 that	knowledge	 into	 the	 real	 thing,	namely	a	working	CAN	application.	That
CAN	 application	 will	 be	 the	 basics	 of	 an	 USB-to-CAN	 Gateway	 with	 CAN	 network
monitoring	and	diagnostic	features	as	explained	in	the	chapters	 to	follow.	From	here	on,
with	the	knowledge	gained	through	this	project,	I	encourage	you	to	let	your	mind	flow	and
extend	the	application.	The	possibilities	are	plenty.	Enjoy!

	

However,	before	we	get	 there	 let	me	explain	 the	approach	of	writing	 this	book:	 I	 could
have	engaged	 into	writing	many	pages	about	Arduino	basics,	what	 it	 is,	where	 it	comes
from,	how	to	use	it,	etc.,	for	the	mere	purpose	of	adding	more	pages	and,	as	a	result,	being
able	 to	 charge	 more	 money	 for	 my	 book.	 However,	 there	 are	 myriads	 of	 books	 on
Arduino,	 Arduino	 Sketches,	 and	 Arduino	 Shields	 available	 in	 the	 market,	 and	 I	 won’t
waste	your	money	or	time.	However,	references	to	Arduino	basics	may	appear	but	only	in
passing.

	

That	 being	 said,	 this	 book	 assumes	 some	 knowledge	 of	 the	 Arduino	 hardware	 and	 its
programming.

	

It	 also	 assumes	 some	 basic	 knowledge	 of	Controller	Area	Network	 (CAN).	 I	will	 refer



briefly	to	some	aspects	of	CAN,	but	these	are	the	mere	basics	of	the	actual	protocol,	just
enough	to	understand	the	concept.	In	all	truth,	there	is	no	need	to	understand	all	details	of
the	protocol,	since	100%	of	the	protocol	is	implemented	on	a	chip,	the	CAN	controller.	All
we	need	to	do	in	this	book	is	to	receive,	transmit,	and	process	data.	The	rest	is	up	to	your
fantasy.

	

Nevertheless,	the	CAN	protocol	utilizes	some	ingenious	features,	and	if	you	are	interested
in	learning	more,	please	refer	to	A	Comprehensible	Guide	to	Controller	Area	Network	as
mentioned	in	the	literature	appendix	of	this	book.

	

Last,	 but	 not	 least,	 let	me	 lose	 some	words	 on	my	programming	 style	 that	 is	 definitely
different	than	what	you	usually	see.

	

I	put	great	emphasis	not	only	on	readability	of	code;	I	also	have	debugging	in	mind	when	I
write	 code.	 I	 am	using	a	 slightly	modified	version	of	 the	Hungarian	Notation,	meaning
looking	at	a	variable’s	or	function’s	name	provides	you	some	information	about	its	nature.
For	instance,	the	prefix	n	indicates	an	integer	variable	(e.g.	nVariable).	In	addition,	being
familiar	with	a	number	of	programming	languages,	I	attempt	to	keep	the	best	of	all	worlds.
For	instance,	I	add	comments	behind	almost	every	bracket	to	indicate	information	such	as
end	 if	 or	end	while,	 etc.,	which	 helps	 identify	 program	blocks.	This	may	be	helpful	 for
Visual	Basic	programmers	who	are	new	to	C/C++	programming.

	

Like	 under	Visual	Basic,	my	 functions/routines	 start	with	 either	Sub	 (the	 return	 code	 is
void)	or	xFct	(where	x	indicates	the	type	of	the	return	code,	for	instance,	n	for	integer).

	

About	the	Author
	

I	 am	 the	 author	 of	 the	 “Comprehensible	 Guide”	 series	 of	 technical	 literature	 covering
topics	 like	Controller	Area	Network	 (CAN),	SAE	 J1939,	 Industrial	Ethernet,	 and	Servo
Motor	Sizing.	I	have	worked	in	the	CAN	industry	since	1997	and	before	that	was	a	motion
control	 engineer	 in	 the	 paper	 manufacturing	 industry.	 	 I	 have	 a	 master’s	 degree	 in
electrical	engineering	from	the	University	of	Wuppertal	in	Germany.

	

During	the	past	years,	I	have	conducted	numerous	seminars	on	industrial	fieldbus	systems
such	as	CAN,	CANopen,	SAE	J1939,	Industrial	Ethernet,	and	more	during	various	Real
Time	Embedded	And	Computing	Conferences	 (RTECC),	 ISA	 (Instrumentation,	 Systems,
and	Automation	Society)	conferences	and	various	other	events	all	over	the	United	States
and	Canada.

	



I	 had	 the	 opportunity	 of	 traveling	 the	world	 extensively,	 but	 settled	 in	New	England	 in
1989.	 	 I	 presently	 live	 in	 an	 old	 farmhouse	 in	Greenfield,	Massachusetts	with	my	 red-
haired,	green-eyed	Irish-American	wife	and	our	son	Patrick.

	

For	 more	 information	 on	 my	 works	 and	 to	 contact	 me,	 see	 my	 website	 at
http://copperhilltech.com.

	

Contact	the	Author
	

Despite	all	efforts	in	preparing	this	book,	there	is	always	the	possibility	that	some	aspects
or	facts	will	not	find	everybody’s	approval,	which	prompts	us,	author	and	publisher,	to	ask
for	your	 feedback.	 If	 you	would	 like	 to	propose	 any	 amendments	or	 corrections,	 please
send	us	your	comment.	We	look	forward	to	any	support	in	supplementing	this	book,	and
we	welcome	all	discussions	that	contribute	to	making	the	topic	of	 this	book	as	thorough
and	objective	as	possible.

	

To	 submit	 amendments	 and	 corrections	 please	 log	 on	 to	 the	 author’s	 website	 at
http://copperhilltech.com/contact-us/	and	leave	a	note.

	

Code	And	Projects	Download
	

Any	additional	 information	created	after	 the	publishing	date	of	 this	book	plus	project	&
source	code	(Arduino	and	Windows)	are	available	as	a	free	download	through	the	author’s
website	 at	 http://copperhilltech.com/controller-area-network-can-prototyping-with-
arduino/

	





1.	Introduction	to	Controller	Area	Network

Controller	 Area	 Network	 (CAN)	 is	 a	 serial	 network	 technology	 that	 was	 originally
designed	for	the	automotive	industry,	especially	for	European	cars,	but	has	also	become	a
popular	 bus	 in	 industrial	 automation	 as	 well	 as	 other	 applications.	 The	 CAN	 bus	 is
primarily	used	in	embedded	systems,	and	as	its	name	implies,	is	a	network	technology	that
provides	 fast	 communication	 among	 microcontrollers	 up	 to	 real-time	 requirements,
eliminating	 the	 need	 for	 the	much	more	 expensive	 and	 complex	 technology	 of	 a	Dual-
Ported	RAM.

	

CAN	 is	 a	 two-wire,	 half	 duplex,	 high-speed	 network	 system,	 that	 is	 far	 superior	 to
conventional	serial	technologies	such	as	RS232	in	regards	to	functionality	and	reliability
and	yet	CAN	implementations	are	more	cost	effective.

	

	

While,	 for	 instance,	TCP/IP	 is	designed	for	 the	 transport	of	 large	data	amounts,	CAN	is
designed	 for	 real-time	 requirements	 and	with	 its	 1	MBit/sec	baud	 rate	 can	 easily	beat	 a
100	 MBit/sec	 TCP/IP	 connection	 when	 it	 comes	 to	 short	 reaction	 times,	 timely	 error
detection,	quick	error	recovery	and	error	repair.

	

CAN	networks	can	be	used	as	an	embedded	communication	system	for	microcontrollers
as	well	as	an	open	communication	system	for	intelligent	devices.	Some	users,	for	example
in	the	field	of	medical	engineering,	opted	for	CAN	because	they	have	to	meet	particularly
stringent	safety	requirements.

	

Similar	requirements	had	to	be	considered	by	manufacturers	of	other	equipment	with	very
high	safety	or	reliability	requirements	(e.g.	robots,	lifts	and	transportation	systems).

	

The	greatest	advantage	of	Controller	Area	Network	lies	in	the	reduced	amount	of	wiring
combined	with	an	ingenious	prevention	of	message	collision	(meaning	no	data	will	be	lost
during	message	transmission).

	



	

Without	CAN																																																								With	CAN

	

The	following	shows	a	need-to-know	overview	of	CAN’s	technical	characteristics.

	

Controller	Area	Network

	

Is	a	serial	networking	technology	for	embedded	solutions.
Needs	only	two	wires	named	CAN_H	and	CAN_L.
Operates	at	data	rates	of	up	to	1	Megabit	per	second.
Supports	a	maximum	of	8	bytes	per	message	frame.
Does	 not	 support	 node	 IDs,	 only	 message	 IDs.	 One	 application	 can	 support
multiple	message	IDs.
Supports	message	priority,	i.e.	the	lower	the	message	ID	the	higher	its	priority.
Supports	two	message	ID	lengths,	11-bit	(standard)	and	29-bit	(extended).
Does	 not	 experience	 message	 collisions	 (as	 they	 can	 occur	 under	 other	 serial
technologies).
Is	not	demanding	in	terms	of	cable	requirements.	Twisted-pair	wiring	is	sufficient.

	

Note:	For	more	detailed	information	on	CAN,	please	refer	to	“A	Comprehensible	Guide	to
Controller	Area	Network”	as	mentioned	in	the	literature	appendix	of	this	book.

	



2.	Prototyping	Hardware	and	its	Variants

As	I	had	mentioned	earlier	in	this	book,	it	is	assumed	that	you	have	some	basic	knowledge
of	 the	 Arduino,	 Arduino	 Sketches,	 and	 Arduino	 Shields.	 I	 will	 nevertheless	 take	 the
opportunity	of	mentioning	the	prototyping	hardware	and	its	variants.

	

It	 is	 important	 to	know	 that	 the	Arduino,	 even	 though	perfect	 for	prototyping	due	 to	 its
low	price	and	ease	of	programming,	is	not,	in	its	bare	form,	an	industrial-strength	solution,
not	only	in	terms	of	environmental	specs	(e.g.	temperature	range,	etc.)	but	also	in	terms	of
execution	speed	and	memory	resources.

	

Specifically,	when	 it	comes	 to	CAN	applications	at	1	Mbit/sec	and	high	data	 traffic,	 the
Arduino	may	 reach	 its	 limits	quickly.	There	are,	however,	 advanced	and	yet	 compatible
alternatives	to	the	Arduino	as	explained	in	the	following	chapters.

	



2.1	Arduino

In	order	to	develop	and	test	the	sample	programs	(sketches)	as	shown	in	this	book,	I	used
the	 Arduino	 Uno.	 The	 hardware	 consists	 of	 an	 open-source	 hardware	 board,	 usually
designed	 around	 an	 8-bit	 Atmel	 AVR	 microcontroller	 with	 2	 KB	 RAM	 (working
memory),	32	KB	Flash	Memory	(sketches)	and	1	KB	EEPROM	(non-volatile).

	

These	 technical	 specifications	 are	 more	 than	 sufficient	 for	 basic	 prototyping	 of	 CAN
applications	 and	 the	 proof	 of	 concept.	 However,	 to	 re-iterate	 the	 point,	 with	 growing
demands	for	execution	speed	and	extended	functionality,	the	Arduino	may	quickly	reach
its	limits.

	

Note:	All	Arduino	programs	(sketches)	as	shown	in	this	book	were	developed	and	tested
with	the	Arduino	Uno.	There	is	no	guarantee	that	these	programs	will	work	“as	is”	on	any
other	compatible	system.

	



2.2	Intel	Galileo

	

The	 Intel	 Galileo	 is	 a	 microcontroller	 board	 based	 on	 the	 Intel®	 Quark	 SoC	 X1000
Application	Processor,	a	32-bit	Intel	Pentium-class	system	on	a	chip.	It	is	designed	to	be
hardware	and	software	pin-compatible	with	Arduino	shields	designed	for	the	Uno	R3.

	

The	Galileo	 board	 is	 also	 software	 compatible	with	 the	Arduino	 software	 development
environment,	which	should	make	usability	and	introduction	a	snap.

	

In	addition	to	Arduino	hardware	and	software	compatibility,	the	Galileo	board	has	several
PC	 industry	 standard	 I/O	 ports	 and	 features	 to	 expand	 native	 usage	 and	 capabilities
beyond	the	Arduino	shield	ecosystem.	A	full	sized	mini-PCI	Express	slot,	100Mb	Ethernet
port,	Micro-SD	 slot,	RS-232	 serial	 port,	USB	Host	 port,	USB	Client	 port,	 and	 8MByte
NOR	flash	come	standard	on	the	board.

	

The	CPU	is	a	400MHz	32-bit	Intel®	Pentium	instruction	set	architecture	(ISA)-compatible
processor,	and	there	 is	up	 to	8	MByte	of	Flash	available.	(Source:	Galileo	Datasheet	by
Intel)

	

For	 more	 information	 see:	 http://www.intel.com/content/www/us/en/do-it-
yourself/galileo-maker-quark-board.html

	



2.3	LeafLabs	Maple	Microcontroller	Board

	

As	 similar	as	 it	may	be	 to	 the	Arduino,	 the	differences	are	what	 really	make	 the	Maple
stand	out.	It	harnesses	the	power	of	a	32-bit	ARM	Cortex-M3	clocked	at	72	MHz	to	push
39	GPIOs,	16	analog	pins,	12-bit	ADC	resolution	and	15	PWM	pins	at	16-bit	resolution.
In	order	 to	make	 sure	you	have	plenty	of	programming	 room	 to	 flex	 that	hardware,	 the
Maple	also	provides	128k	Flash	and	20KB	SRAM.	All	of	this	performance	is	delivered	in
the	same	form	factor	as	the	Arduino	Pro.

	

If	 your	 current	 Arduino-based	 project	 is	 pushing	 against	 the	 performance	 limits	 of	 the
ATmega,	 porting	 it	 over	 to	 Maple	 may	 be	 the	 fastest	 and	 easiest	 way	 to	 continue
developing	your	project	without	starting	from	scratch.

	

By	swapping	 the	popular	“avr-gcc”	compiler	with	CodeSourcery’s	“arm-none-eabi-gcc,”
LeafLabs	 manages	 to	 provide	 a	 nearly	 identical	 programming	 experience	 to	 Arduino
despite	targeting	a	completely	different	architecture.	Also,	while	some	Arduino	shields	are
incompatible	due	to	certain	capabilities	being	allocated	to	different	pins,	several	of	them
are	currently	supported	and	there	are	more	to	come.	There	is	also	a	guide	available	on	the
product	 page	 for	 porting	 Arduino	 libraries	 and	 source	 code	 over	 to	 Maple.	 (Source:
LeafLabs	open	electronis)

	

For	more	information	see:	http://leaflabs.com/docs/hardware/maple.html

	



3.	Arduino	CAN	Shields

Since	Controller	Area	Network	 (CAN)	 is	 predominantly	 targeted	 at	 industrial	 solutions
(versus	the	vastly	more	popular	USB	for	non-industrial	use	such	as	home	and	lab),	there
aren’t	too	many	choices	available	in	the	market.

	

Through	some	research	(i.e.	browsing)	I	found	two	very	similar	solutions,	and	they	both
work	with	the	same	CAN	library	(as	explained	in	a	later	chapter).	Both	solutions	use	the
Microchip	 MCP2515	 CAN	 controller.	 Also,	 both	 solutions	 are	 distributed	 through
worldwide	online	resources.

	



3.1	Microchip	MCP2515	CAN	Controller

Microchip	 Technology’s	 MCP2515	 is	 a	 stand-alone	 Controller	 Area	 Network	 (CAN)
controller	 that	 implements	 the	 CAN	 specification,	 version	 2.0B.	 It	 is	 capable	 of
transmitting	 and	 receiving	 both	 standard	 and	 extended	 data	 and	 remote	 frames.	 The
MCP2515	has	two	acceptance	masks	and	six	acceptance	filters	that	are	used	to	filter	out
unwanted	messages,	thereby	reducing	the	host	MCUs	overhead.	The	MCP2515	interfaces
with	microcontrollers	(MCUs)	via	an	industry	standard	Serial	Peripheral	Interface	(SPI).

	

The	 features	 include	 two	 receive	 buffers	 with	 prioritized	 message	 storage,	 six	 29-bit
filters,	two	29-bit	masks,	and	three	transmit	buffers	with	prioritization	and	abort	features.
(Source:	Microchip	Datasheet)

	

Note:	CAN	specification	2.0B	refers	to	the	capability	of	using	standard	CAN	frames	with
11-bit	message	identifier	plus	the	extended	format	with	a	29-bit	message	ID.

	

To	download	the	full	MCP2515	datasheet	log	on	to:

http://ww1.microchip.com/downloads/en/DeviceDoc/21801G.pdf

	

Both	CAN	shields	as	described	in	the	following	chapters	utilize	the	Microchip	MCP2551
CAN	 transceiver,	 which	 converts	 the	 internal	 TTL	 signals	 to	 a	 differential	 voltage	 as
demanded	by	the	CAN	standard.

	

To	download	the	full	MCP2551	datasheet	log	on	to:

http://ww1.microchip.com/downloads/en/DeviceDoc/21667f.pdf

	



3.2	Arduino	CAN-Bus	Shield	by	SK	Pang	electronics

	

This	 shield	 by	 SK	 Pang	 electronics	 provides	 the	 Arduino	 CAN-Bus	 capability.	 As
explained	 previously,	 it	 uses	 the	 Microchip	 MCP2515	 CAN	 controller	 with	 MCP2551
CAN	transceiver.	The	CAN	connection	is	realized	via	a	standard	9-way	sub-D,	however
the	pin	assignment	for	CAN_H,	CAN_L	is	not	according	to	standard.

	

Note:	In	all	truth,	there	is	no	mandatory	standard	for	pin	assignment,	but	the	industry	uses
pins	2	(CAN_L)	and	7	(CAN_H)	as	a	virtual	standard.

	

I	recommend	using	the	on-board	CAN_L	and	CAN_H	contacts	 to	solder	the	CAN	cable
directly	to	the	board.

	

The	shield	also	comes	with	a	uSD	card	holder,	a	serial	LCD	connector,	and	a	connector	for
an	EM406	GPS	module,	making	this	shield	suitable	for	data	logging	application.

	

Features

	

CAN	v2.0B	up	to	1	Mb/s
High	speed	SPI	Interface	(10	MHz)
Standard	and	extened	data	and	remote	frames
CAN	connection	via	standard	9-pin	sub-D	connector
As	an	option,	power	can	be	supplied	 to	 the	Arduino	by	sub-D	via	 resettable	 fuse
and	reverse	polarity	protection.
Socket	for	EM406	GPS	module
Micro	SD	card	holder
Connector	for	serial	LCD
Reset	button
Joystick	control	menu	navigation	control
Two	LED	indicator

	



Notes

	

No	cables	included
Header	pins	are	not	included;	they	must	be	ordered	separately
Pin	assignment	for	CAN_H,	CAN_L	not	according	to	standard

	

All	 technical	 information	 regarding	 the	 use	 of	 the	 CAN	 controller,	 uSD	 card	 holder,
joystick,	LEDs,	etc.	can	be	found	on	the	company’s	wiki	website	at:

https://code.google.com/p/skpang/

	

Ordering	Information

	

To	order	 the	SK	Pang	ele3ctronics	CAN	shield,	you	can	use	 the	following	resources	(or
browse	for	“Arduino	CAN-BUS	Shield”	for	further	options):

	

Sparkfun	-	https://www.sparkfun.com/products/10039

	

SK	 Pang	 electronics	 -	 http://skpang.co.uk/catalog/arduino-canbus-shield-with-usd-card-
holder-p-706.html

	



3.3	CAN-BUS	Shield	by	Seeed	Studio

	

In	terms	of	CAN	capabilities,	the	shield	by	Seeek	Studio	provides	the	same	functionality
as	 the	 one	 by	 SK	 Pang	 electronics,	 however,	 it	 comes	 with	 a	 much	 lower	 price	 tag,
because	it	does	not	have	any	additional	components	besides	the	CAN	interface.

	

Over	 all,	 the	 device	makes	 a	 solid	 impression,	 especially	 since	 the	 CAN	 connection	 is
according	to	standard	and	in	addition	provides	CAN	connectivity	through	easily	accessible
terminals.

	

Features

	

Implements	CAN	V2.0B	at	up	to	1	Mb/s
SPI	Interface	up	to	10	MHz
Standard	(11	bit)	and	extended	(29	bit)	data	and	remote	frames
Two	receive	buffers	with	prioritized	message	storage
Industrial	standard	9	pin	sub-D	connector
Two	LED	indicators

	

Notes

	

No	cables	included

	

All	 technical	 information	 regarding	 the	 use	 of	 the	CAN	 controller	 can	 be	 found	 on	 the
company’s	wiki	website	at:

http://www.seeedstudio.com/wiki/CAN-BUS_Shield

	



Ordering	Information

	

To	order	the	Seeed	Studio	CAN	shield,	you	can	use	the	following	resources	(or	browse	for
“Arduino	CAN-BUS	Shield”	for	further	options):

	

Seeed	Studio	-	http://www.seeedstudio.com/depot/CANBUS-shield-p-2256.html

	

Important	 to	 know:	 The	 Seeed	 Studio	 CAN	 bus	 shield	 has	 been	 undergoing	 some
hardware	changes	 to	become	compatible	with	 systems	such	as	 the	Arduino	Mega	2560.
The	version	1.0	will	work	with	the	Arduino	Uno,	while	all	higher	versions	also	work	with
the	Mega	2560.	This	will	also	affect	the	code	of	the	Arduino	projects,	specifically	the	line
“MCP_CAN	CAN0(10);”	in	the	main	module	selecting	the	CS	pin.	That	line	must	change
to	 “MCP_CAN	CAN0(9);”	 for	 all	CAN	bus	 shield	versions	 above	1.0.	 	 I	 have	 added	a
comment	in	the	corresponding	section	of	the	code.

	



4.	Arduino	CAN	Sketches

The	 implementation	 of	 either	 one	 of	 the	 introduced	 CAN-BUS	 Shields	 and	 the
corresponding	CAN	sketches	went	surprisingly	smooth	when	paired	with	the	right	library
software.

	

I	 found	 several	 source	 codes	 for	 accessing	 the	MCP2515	 CAN	 controller,	 but	most	 of
them	didn’t	even	pass	the	initial	quality	control	phase	(I	read	the	code	first	before	I	use	it).
One	of	the	quality	criteria	was	the	support	for	29-bit	CAN	message	identifiers	(CAN	2.0B
Compatibility),	which	is	mandatory	when	it	comes	to	implementing,	for	instance,	the	SAE
J1939	 vehicle	 network	 protocol.	 Some	 software	 samples	 I	 found	 were	 just	 literally
“samples”	and	they	left	ample	room	for	guessing	games.

	

I	was	most	pleased	by	the	MCP2515	Library	by	Cory	Fowler,	which	can	be	found	at
https://github.com/coryjfowler/MCP2515_lib

	

This	library	is	compatible	with	any	shield	or	CAN	interface	that	uses	the	MCP2515	CAN
protocol	controller.

	

	

	

In	order	to	test	and	verify	the	proper	transmission	and	reception	of	CAN	messages,	I	used
the	ADFweb	CAN-to-USB	gateway	with	its	Windows	interface.

	

Note:	In	order	to	test	a	CAN	application,	you	need	at	least	two	CAN	nodes	to	establish	a
network	communication.	The	second	node	can	be	another	Arduino	with	CAN	shield	or	(if
the	budget	allows)	another	CAN	device	with	CAN	data	monitoring	capabilities.

	



4.1	The	MCP2515	Library

As	with	any	serial	networking	controller,	the	essential	functions	are:

	

1.	Initialization

2.	Read	Data

3.	Write	Data

4.	Check	Status

	

In	case	of	the	MCP2515	library,	these	functions	are	represented	by:

	

1.	Initialization:	CAN0.begin

	

2.	Read	Data:	CAN0.readMsgBuf

incl.	CAN0.checkReceive,	CAN0.getCanId

	

3.	Write	Data:	CAN0.sendMsgBuf

	

4.	Check	Status:	CAN0.checkError

	

4.1.1	Function	Calls

Function:																												CAN0.begin

Purpose:																												Initializes	the	CAN	controller	and	sets	the	speed	(baud	rate)

Parameter:																												CAN_5KPS	…	CAN_1000KPS	(See	mcp_can_dfs.h)

Return	Code:																												CAN_OK	=	Initialization	okay

																												CAN_FAILINIT	=	Initialization	failed

	

Function:																												CAN0.checkReceive

Purpose:																												Check	if	message	was	received



Parameter:																												None

Return	Code:																												CAN_MSGAVAIL	=	Message	available

																												CAN_NOMSG	=	No	message

	

Function:																												CAN0.readMsgBuf

Purpose:																												Read	the	message	buffer

Parameter:																												nMsgLen	returns	the	message	length	(number	of	data	bytes)

																												nMsgBuffer	returns	the	actual	message

Return	Code:																												None

	

Function:																												CAN0.getCANId

Purpose:																												Retrieves	the	ID	of	the	received	message

Parameter:																												None

Return	Code:																												m_nID	=	Message	ID

	

Function:																												CAN0.	sendMsgBuf

Purpose:																												Send	a	message	buffer

Parameter:																												id	=	Message	ID

																												ext	=	CAN_STDID	(11-bit	ID)	or	CAN_EXTID	(29-bit	ID)

																												len	=	Number	of	data	bytes	(0…8)

																												buf	=	Message	buffer

Return	Code:																												None

	

Function:																												CAN0.checkError

Purpose:																												Checks	CAN	controller	for	errors

Parameter:																												None

Return	Code:																												CAN_OK	=	Status	okay

																												CAN_CTRLERROR	=	Error

	

There	are	 further	 functions,	among	others,	 for	message	filtering	and	settings	masks,	and
they	 are	 worth	 being	 checked	 out	 for	 more	 sophisticated	 functions,	 but	 they	 are	 not
necessary	for	simple	CAN	communication	tasks.

	



4.1.2	Implementation

The	 implementation	of	 the	MPC2515	 library	 is	 fairly	easy:	Open	Arduino,	create	a	new
file,	 then	 use	 the	menu	 items	 Sketch->Add	 File…	 to	 include	 the	 following	 files	 to	 the
project:

	

mcp_can.cpp
mcp_can.h
mcp_can_dfs.h

	

In	the	Arduino	project	file	add	the	following	on	top:

	

#include	“mcp_can.h”

#include	<SPI.h>

MCP_CAN	CAN0(10);

	

Let	 me	 repeat	 here:	 The	 Seeed	 Studio	 CAN	 bus	 shield	 has	 been	 undergoing	 some
hardware	changes	 to	become	compatible	with	 systems	such	as	 the	Arduino	Mega	2560.
The	version	1.0	will	work	with	the	Arduino	Uno,	while	all	higher	versions	also	work	with
the	Mega	2560.	This	will	also	affect	the	code	of	the	Arduino	projects,	specifically	the	line
“MCP_CAN	CAN0(10);”	in	the	main	module	selecting	the	CS	pin.	That	line	must	change
to	“MCP_CAN	CAN0(9);”	for	all	CAN	bus	shield	versions	above	1.0.

	

You	 are	 now	 ready	 to	 go.	 The	 following	 chapters	 will	 describe	 how	 to	 implement	 the
function	calls.

	



4.2	CAN	Programming

The	most	exciting	part	about	 this	project	 is	when	it	comes	 to	 the	point	where	 two	CAN
nodes	communicate	with	each	other.	I	started	off	with	writing	a	simple	program	that	sent
messages	 that	were	 received	by	my	USB-to-CAN	gateway	and	 its	Windows	monitoring
software.	 From	 there	 on,	 I	 extended	 the	 program	 to	 also	 receive	 CAN	 messages	 and
display	them	on	the	Arduino	serial	monitor.

	

In	 a	 later	 chapter,	 I	will	 also	 show	a	Windows	programming	example	 that	 establishes	 a
communication	with	the	Arduino.

	

4.2.1	Simple	CAN	Shield	Test

The	following	represents	a	very	simple	CAN	test	program	that	periodically	(i.e.	every	1
second)	sends	out	a	CAN	message	with	a	29-bit	identifier	at	a	baud	rate	of	250	kbit/sec.

	
//	Simple	CAN	Shield	Test

#include	“mcp_can.h”

#include	<SPI.h>

MCP_CAN	CAN0(10);	//	Set	CS	to	pin	10

	

unsigned	char	stmp[8]	=	{0x30,	0x31,	0x32,	0x33,	0x34,	0x35,	0x36,	0x37};

	

//		SYSTEM:	Setup	routine	runs	on	power-up	or	reset

void	setup()	{

	

		//	Set	the	serial	interface	baud	rate

		Serial.begin(9600);

	

		//	Initialize	the	CAN	controller

		//	Baud	rates	are	defined	in	mcp_can_dfs.h

		if	(CAN0.begin(CAN_250KBPS)	==	CAN_OK)	

Serial.print(“CAN	Init	OK.\n\r\n\r”);

		else

Serial.print(“CAN	Init	Failed.\n\r”);

	

}//	end	setup

	



//	Main	Loop	-	Arduino	Entry	Point

void	loop()

{

		//	Send	data:		id	=	0x1FF,	extended	frame,	data	len	=	8,	stmp:	data	buf

		//	ID	mode	(11/29	bit)	defined	in	mcp_can_dfs.h

		CAN0.sendMsgBuf(0x1FF,	CAN_EXTID,	8,	stmp);

	

		//	Run	in	1	sec	interval

		delay(1000);

	

}//	end	loop

	

While	the	code	is	short	and	sufficiently	self-explanatory,	let	me	explain	the	steps	taken	in
the	program.

	

In	the	setup()	routine,	the	program	initializes	the	serial	interface	(USB)	to	a	baud	rate	of
9600	bps	(Please	make	sure	that	your	Arduino	serial	monitor	is	set	to	the	same	rate).

	

It	 then	 initializes	 the	 CAN	 controller	 to	 a	 data	 transmission	 rate	 of	 250	 kbits/sec	 and
displays	possible	error	messages	on	the	Arduino	serial	monitor.

	

In	 the	main	 loop()	 routine,	 the	 program	 sends	 an	 8-byte	 CAN	message	 using	 an	 ID	 of
0x1FF	in	extended	messaging	format	(29-bit	message	ID).	The	actual	message	(unsigned
char	 stmp[8]	 in	 this	example)	contains	a	 string	 from	ASCII	0	 to	7,	which	can	be	easily
spotted	when	using	a	data	monitoring	software.

	

Using	my	 test	 conditions,	 the	message	was	 received	 through	 the	USB-to-CAN	gateway
and	displayed	under	Windows:

	



	

While	this	program	may	not	be	very	useful	without	a	CAN	monitoring	software	(meaning
you	can’t	see	the	result),	in	the	least	it	demonstrates	how	simple	CAN	programming	can
be.

	

4.2.2	Extended	CAN	Shield	Test

In	this	next,	extended	example,	we	use	the	same	program	as	shown	in	the	previous	chapter
but	 add	 a	 CAN	 receiving	 routine	 to	 it.	 The	 result,	 i.e.	 the	 received	 messages,	 will	 be
displayed	through	the	Arduino	serial	monitor.

	
//	Simple	CAN	Shield	Test

#include	<stdlib.h>

#include	“mcp_can.h”

#include	<SPI.h>

MCP_CAN	CAN0(10);																																						//	Set	CS	to	pin	10

	

//	Test	message

unsigned	char	stmp[8]	=	{0x30,	0x31,	0x32,	0x33,	0x34,	0x35,	0x36,	0x37};

	

//		SYSTEM:	Setup	routine	runs	on	power-up	or	reset

void	setup()	{

	

		//	Set	the	serial	interface	baud	rate

		Serial.begin(9600);

	

		//	Initialize	the	CAN	controller



		//	Baud	rates	defined	in	mcp_can_dfs.h

		if	(CAN0.begin(CAN_250KBPS)	==	CAN_OK)

Serial.print(“CAN	Init	OK.\n\r\n\r”);

		else

Serial.print(“CAN	Init	Failed.\n\r”);

	

}//	end	setup

	

//	Main	Loop	-	Arduino	Entry	Point

void	loop()

{

		//	Declarations

		byte	nMsgLen	=	0;

		byte	nMsgBuffer[8];

		char	sString[4];

	

		//	Send	out	a	test	message

		//	Send	data:		id	=	0x1FF,	extended	frame,	data	len	=	8,	stmp:	data	buf

		//	ID	mode	(11/29	bit)	defined	in	mcp_can_dfs.h

		CAN0.sendMsgBuf(0x1FF,	CAN_EXTID,	8,	stmp);	

	

		//	Check	for	a	message

		if(CAN0.checkReceive()	==	CAN_MSGAVAIL)

		{

//	Read	the	message	buffer

CAN0.readMsgBuf(&nMsgLen,	&nMsgBuffer[0]);

INT32U	nMsgID	=	CAN0.getCanId();

	

//	Print	message	ID	to	serial	monitor

Serial.print(“Message	ID:	0x”);

if(nMsgID	<	16)	Serial.print(“0”);

Serial.print(itoa(nMsgID,	sString,	16));

Serial.print(“\n\r”);

	

//	Print	data	to	serial	monitor

Serial.print(“Data:	“);

for(int	nIndex	=	0;	nIndex	<	nMsgLen;	nIndex++)

{



Serial.print(“0x”);

if(nMsgBuffer[nIndex]	<	16)	Serial.print(“0”);

Serial.print(itoa(nMsgBuffer[nIndex],	sString,	16));

Serial.print(”	“);

}//	end	for

Serial.print(“\n\r\n\r”);

	

		}//	end	if

	

		//	Run	in	1	sec	interval

		delay(1000);

	

}//	end	loop

	

Obviously,	 the	program	has	grown	compared	to	the	previous	one,	but	most	of	 the	added
code	is	used	for	the	data	display	on	the	Arduino	serial	monitor.

	

First,	 note	 on	 top	 the	 line	 #include	 <stdlib.h>.	 The	 stdlib.h	 file	 allows	 us	 to	 convert
integer	data	into	ASCII,	which	is	necessary	for	the	data	display.

	

The	setup()	routine	remains	the	same	as	it	was	in	the	previous	example.

	

In	the	loop()	routine,	we	first	declare	some	variables	for	the	message	reception	and	code
conversion.	 We	 still	 send	 out	 the	 same	 message	 as	 before	 by	 calling	 the
CAN0.sendMsgBuf()	function.

	

Next,	we	check	for	the	reception	of	a	CAN	message,	and	if	that	is	the	case,	we	read	the
message	 into	 the	assigned	buffer	and	retrieve	 the	message	ID.	The	following	code	 is	all
about	converting	the	received	data	into	a	human-readable	format	(ASCII)	and	display	it	on
the	Arduino	serial	monitor.

	

Last,	 but	 not	 least,	 we	 halt	 the	 system	 for	 one	 second	 (1000	 milliseconds).	 Naturally,
under	 real-life	 conditions,	 this	 delay	 is	 not	 reasonable,	 since	 there	 can	 occur	 literally
thousands	 of	messages	 per	 one	 second.	However,	 this	 code	 is	meant	merely	 as	 a	 demo
sample	 that	 proves	 that	 the	 actual	CAN	communication	 can	be	 accomplished	with	very
little	code.

	

If	you	load	this	program	onto	two	separate	Arduinos	with	CAN	shield,	you	have	not	only



accomplished	 a	 full	 CAN	 network,	 you	 can	 also	 see	 the	 CAN	 messages	 as	 they	 are
exchanged	between	the	two	nodes.

	

Note:	 It	may	sound	obvious,	but	please	make	sure,	 in	case	you	use	more	 than	one	CAN
node,	that	all	nodes	are	initialized	with	the	same	baud	rate.	Using	different	baud	rates	is
the	most	common	cause	when	data	communication	fails.

	

4.2.3	A	Simple	CAN	Network	Monitoring	and	Diagnostics	Program

The	Arduino	board	in	combination	with	the	CAN	shield	provides	the	hardware	for	a	full-
fledged	CAN	network	monitoring	tool,	and	this	next	Arduino	program	is	a	first	step	in	that
direction.

	

However,	before	we	get	into	more	detail,	 let	me	issue	some	warnings	regarding	possible
restrictions	of	the	system:

	

The	MPC2515	has	only	two	receive	buffers,	which	limits	the	system’s	capabilities
to	respond	in	a	timely	fashion	while	receiving	and	processing	the	data	traffic.	For
high-speed,	high-busload	applications,	it	is	recommended	to	use	the	message	filter
functions	to	reduce	the	processing	load	on	the	CPU.

	

Besides	 the	 limited	 processing	 speed	 of	 the	 8-bit	 CPU,	 the	Arduino	 comes	with
only	 32	 kByte	 program	memory,	which	 is	 sufficient	 for	 a	 great	 number	 of	 small
applications.	However,	when	 it	 comes	 to	more	 demanding	 tasks	 such	 as	 a	 CAN
monitoring	 tool,	 the	memory	 resources	may	be	 exhausted	quicker	 than	 expected.
For	instance,	the	following	application	already	uses	roughly	20	percent	of	the	total
memory	 space,	 and	 it	 provides	 only	 a	 very	 rudimentary	 version	 of	 a	monitoring
tool.

	

In	 all	 consequence,	 if	 you	 are	 serious	 about	 creating	 a	 more-or-less	 professional
application,	you	might	want	 to	consider	alternative	hardware	solutions	as	discussed	 in	a
previous	chapter.

	

In	order	to	create	a	CAN	monitoring	system,	we	need	to:

	

1.	 Receive	CAN	messages	and	display	them
2.	 Be	able	to	enter	CAN	messages	and	transmit	them

	



With	the	previous	two	programming	samples	in	mind,	we	have	already	accomplished	step
#1,	but	the	next	step	(entering	CAN	messages)	needs	a	bit	more	work.

	

The	idea	is	to	enter	the	CAN	message	into	Arduino’s	serial	monitor	and	transmit	the	result
by	clicking	the	Send	button.	 In	order	 to	accomplish	 that,	we	need	 to	follow	a	data	entry
format	as	shown	in	the	following.

	

Command:														Send	CAN	Message	(11	bit)

Description:														Node	receives	a	message	and	transmits	it	into	the	CAN	bus

Format:														#SM	id	n	dd	dd….

	

														id	=	Message	ID	(2	bytes,	hex)

														n		=	Number	of	bytes	(1	byte,	0	to	8)

														d		=	data	bytes	(hex,	up	to	eight	bytes)

	

														Example:

														#SM	01FF	8	30	31	32	33	34	35	36	37

	

In	this	previous	example,	we	design	a	CAN	message	with	an	ID	of	01FF	and	a	data	length
of	 8	 bytes.	 These	 8	 bytes	 are	 represented	 by	 the	 number	 30	 (hex)	 to	 37,	 which	 is	 the
equivalent	of	ASCII-0	to	ASCII-7.

	

	

While	the	basic	functionality	of	sending	and	receiving	CAN	messages	remains	the	same,
the	 program	 size	 and	 complexity	 has,	 naturally,	 grown.	Most	 of	 the	 code,	 however,	 is
being	 used	 for	 conversion	 between	 hex	 and	 ASCII	 formats	 (for	 readability)	 and	 some
rudimentary	syntax	check.

	

Note:	The	 data	 entry	 in	 this	 following	 programming	 sample	 is	 not	 fool-proof,	meaning,
while	the	program	does	some	syntax	checks,	it	is	still	possible	that	incorrect	data	entries
will	still	be	interpreted	as	valid	CAN	message	formats.

	



Also,	 this	 example	 still	 uses	 9600	 baud	 for	 the	 communication	 with	 Arduino’s	 serial
monitor.	A	 faster	 transmission	 speed	 is	 recommended	 for	CAN	networks	with	 high	 data
traffic.

	
//	Simple	CAN	Shield	Test

#include	<stdlib.h>

#include	“mcp_can.h”

#include	<SPI.h>

MCP_CAN	CAN0(10);																																						//	Set	CS	to	pin	10

	

//	Constants

#define	MAX_CMD_LENGTH	60

	

#define	CR	“\n\r”

#define	CRCR	“\n\r\n\r”

	

//		SYSTEM:	Setup	routine	runs	on	power-up	or	reset

void	setup()	{

	

		//	Set	the	serial	interface	baud	rate

		Serial.begin(9600);

	

		//	Initialize	the	CAN	controller
		//	Baud	rates	defined	in	mcp_can_dfs.h

		if	(CAN0.begin(CAN_250KBPS)	==	CAN_OK)	

Serial.print(“CAN	Init	OK.\n\r\n\r”);

		else

Serial.print(“CAN	Init	Failed.\n\r”);

	

}//	end	setup

	

//	Main	Loop	-	Arduino	Entry	Point

void	loop()

{	

		//	Check	for	a	received	CAN	message	and	print	it	to	the	Serial	Monitor

		SubCheckCANMessage();

	

		//	Check	for	a	command	from	the	Serial	Monitor	and	send	message	as	entered



		SubSerialMonitorCommand();

	

}//	end	loop

	

//	––––––––––––––––––––––––

//	Check	for	CAN	message	and	print	it	to	the	Serial	Monitor

//	––––––––––––––––––––––––

void	SubCheckCANMessage(void)

{

		//	Declarations

		byte	nMsgLen	=	0;

		byte	nMsgBuffer[8];

		char	sString[4];

	

		if(CAN0.checkReceive()	==	CAN_MSGAVAIL)

		{

//	Read	the	message	buffer

CAN0.readMsgBuf(&nMsgLen,	&nMsgBuffer[0]);

INT32U	nMsgID	=	CAN0.getCanId();

	

//	Print	message	ID	to	serial	monitor

Serial.print(“Message	ID:	0x”);

if(nMsgID	<	16)	Serial.print(“0”);

Serial.print(itoa(nMsgID,	sString,	16));

Serial.print(“\n\r”);

	

//	Print	data	to	serial	monitor

Serial.print(“Data:	“);

for(int	nIndex	=	0;	nIndex	<	nMsgLen;	nIndex++)

{

Serial.print(“0x”);

if(nMsgBuffer[nIndex]	<	16)	Serial.print(“0”);

Serial.print(itoa(nMsgBuffer[nIndex],	sString,	16));

Serial.print(”	“);

}//	end	for

Serial.print(CRCR);

	

		}//	end	if



	

}//	end	subCheckCANMessage

	

//	––––––––––––––––––––––––

//	Check	for	command	from	Serial	Monitor

//	––––––––––––––––––––––––

void	SubSerialMonitorCommand()

{

		//	Declarations

		char	sString[MAX_CMD_LENGTH+1];

		bool	bError	=	true;

	

		unsigned	long	nMsgID	=	0xFFFF;

		byte	nMsgLen	=	0;

		byte	nMsgBuffer[8];

	

		//	Check	for	command	from	Serial	Monitor

		int	nLen	=	nFctReadSerialMonitorString(sString);

	

		if(nLen	>	0)

		{

//	A	string	was	received	from	serial	monitor

if(strncmp(sString,	“#SM	“,	4)	==	0)

{

//	The	first	4	characters	are	acceptable

//	We	need	at	least	10	characters	to	read	the	ID	and	data	number

if(strlen(sString)	>=	10)

{

//	Determine	message	ID	and	number	of	data	bytes

nMsgID	=	lFctCStringLong(&sString[4],	4);

nMsgLen	=	(byte)nFctCStringInt(&sString[9],	1);

	

if(nMsgLen	>=0	&&	nMsgLen	<=8)

{							

//	Check	if	there	are	enough	data	entries

int	nStrLen	=	10	+	nMsgLen	*	3;		//	Expected	msg	length

if(strlen(sString)	>=	nStrLen)	//	Larger	length	is	acceptable

{



int	nPointer;

for(int	nIndex	=	0;	nIndex	<	nMsgLen;	nIndex++)

{

nPointer	=	nIndex	*	3;		//	Blank	character	plus	two	numbers

															nMsgBuffer[nIndex]	=

(byte)nFctCStringInt(&sString[nPointer	+	11],	2);												

}//	end	for

	

//	Reset	the	error	flag

bError	=	false;

	

//	Everything	okay;	send	the	message

CAN0.sendMsgBuf(nMsgID,	CAN_STDID,	nMsgLen,	nMsgBuffer);

	

//	Repeat	the	entry	on	the	serial	monitor

Serial.print(sString);

Serial.print(CRCR);

	

}//	end	if

	

}//	end	if

	

}//	end	if

	

}//	end	if

	

//	Check	for	entry	error

if(bError	==	true)

{

Serial.print(“???:	“);

Serial.print(sString);

Serial.print(CR);

}

	

		}//	end	if

	

}//	end	SubSerialMonitorCommand

	



//	––––––––––––––––––––––––

//	Read	message	from	Serial	Monitor

//	––––––––––––––––––––––––

//	Returns	string	length

//

byte	nFctReadSerialMonitorString(char*	sString)

{

		//	Declarations

		byte	nCount;

	

		nCount	=	0;

	

		if(Serial.available()	>	0)

		{

Serial.setTimeout(100);

nCount	=	Serial.readBytes(sString,	MAX_CMD_LENGTH);			

		}//	end	if

	

		//	Terminate	the	string

		sString[nCount]	=	0;

	

		return	nCount;

	

}//	end	nFctReadSerialMonitorString

	

//	––––––––––––––––––––––––

//	Convert	string	into	int

//	––––––––––––––––––––––––

//	Note:	nLen	MUST	be	between	1	and	4

//

//	Returns	integer	value	(-1	indicates	an	error	in	the	string)

//

int	nFctCStringInt(char	*sString,	int	nLen)

{

		//	Declarations

		int	nNum;

		int	nRetCode	=	0;

	



		//	Check	the	string	length

		if(strlen(sString)	<	nLen)

nRetCode	=	-1;

		else

		{

//	String	length	okay;	convert	number

int	nShift	=	0;

for(int	nIndex	=	nLen	-	1;	nIndex	>=0;	nIndex—)

{

if(sString[nIndex]	>=	‘0’	&&	sString[nIndex]	<=	‘9’)

nNum	=	int(sString[nIndex]	-	‘0’);

else	if(sString[nIndex]	>=	‘A’	&&	sString[nIndex]	<=	‘F’)

nNum	=	int(sString[nIndex]	-	‘A’)	+	10;

else	goto	nFctCStringInt_Ret;

	

nNum	=	nNum	<<	(nShift++	*	4);

nRetCode	=	nRetCode	+	nNum;	

	

}//	end	for

	

		}//	end	else

	

		//	Return	the	result

nFctCStringInt_Ret:

	

		return	nRetCode;

	

}//	end	nFctCStringInt

	

//	––––––––––––––––––––––––

//	Convert	string	into	unsigned	long

//	––––––––––––––––––––––––

//	Note:	nLen	MUST	be	between	1	and	4

//

//	Returns	integer	value	(-1	indicates	an	error	in	the	string)

//

unsigned	long	lFctCStringLong(char	*sString,	int	nLen)

{



		//	Declarations

		unsigned	long	nNum;

		unsigned	long	nRetCode	=	0;

	

		//	Check	the	string	length

		if(strlen(sString)	<	nLen)

nRetCode	=	-1;

		else

		{

//	String	length	okay;	convert	number

unsigned	long	nShift	=	0;

for(int	nIndex	=	nLen	-	1;	nIndex	>=0;	nIndex—)

{

if(sString[nIndex]	>=	‘0’	&&	sString[nIndex]	<=	‘9’)

nNum	=	int(sString[nIndex]	-	‘0’);

else	if(sString[nIndex]	>=	‘A’	&&	sString[nIndex]	<=	‘F’)

nNum	=	int(sString[nIndex]	-	‘A’)	+	10;

else	goto	lFctCStringLong_Ret;

	

nNum	=	nNum	<<	(nShift++	*	4);

nRetCode	=	nRetCode	+	nNum;	

	

}//	end	for

	

		}//	end	else

	

		//	Return	the	result

lFctCStringLong_Ret:

	

		return	nRetCode;

	

}//	end	lFctCStringLong

	

Note:	This	programming	example,	unlike	 the	 first	 two	samples	 in	 this	book,	 is	based	on
the	use	of	an	11-bit	message	identifier,	paying	tribute	to	the	majority	of	CAN	applications.

	

Without	going	into	the	last	detail,	here	is	a	brief	description	of	the	code:



	

The	setup()	 function	remains	 the	same	as	 in	 the	first	 two	programming	examples	 in	 this
book,	i.e.	it	handles	the	initialization	of	the	serial	connection	and	the	CAN	controller.

	

The	loop()	 routine,	however,	 looks	extremely	simple,	but	that	only	means	that	 the	major
part	of	the	functionality	has	been	distributed	to	a	number	of	new	functions.

	

Inside	loop()	are	only	two	function	calls:

	

1.	 SubCheckCANMessage()	checks	for	a	 received	CAN	message	and	displays	 it	on
the	Arduino	serial	monitor.

	

2.	 SubSerialMonitorCommand()	 receives	 a	 string	 from	 Arduino’s	 serial	 monitor,
achieves	some	rudimentary	syntax	check,	and	sends	out	the	CAN	message.

	

The	remaining	function	calls	are:

	

nFctReadSerialMonitorString()	reads	the	data	format	string	as	entered	by	the	user
and	returns	the	string	length.

	

nFctCStringInt()	converts	a	string	into	integer	and	returns	the	integer	data.

	

lFctCStringLong()	converts	a	string	into	long	and	returns	the	long	data.

	

Note:	Unlike	C#,	the	C	and	C++	programming	languages	provide	only	limited	support	for
data	 conversion,	 and	 sometimes	 writing	 your	 own	 conversion	 functions	 fits	 your
application	needs	better	than	the	provided	library	functions.

	

The	following	shows	screen	shots	taken	trough	a	session	with	this	programming	example:

	



	

First,	 we	 received	 two	 CAN	messages	 (IDs	 0x80	 and	 0x100),	 then	 we	 sent	 two	 CAN
messages	(IDs	01FF	and	00EF).

	

For	this	operation,	I	used	my	standard	test	configuration	(i.e.	USB-to-CAN	gateway	with
Windows	monitoring	tool	as	the	second	CAN	node),	but	from	here	on,	it	is	possible	to	use
two	Arduinos	with	CAN	shield	running	the	same	application.

	

In	 order	 to	 extend	 the	 functionality	 of	 this	 programming	 example,	 the	 following
commands	would	be	helpful	to	provide	a	full-fledged	monitoring	and	diagnostics	tool:

	

CAN	 Start/Stop	 –	 Starts	 or	 stops	 displaying	 messages	 on	 the	 Arduino	 serial
monitor.
CAN	Baud	Rate	–	Modify	the	CAN	baud	rate.
Request	 CAN	 Settings	 –	 Reports	 the	 current	 settings	 such	 as	 baud	 rate	 and
message	ID	mode.
Send	CAN	Message	in	29-bit	format.
Add	CAN	Message	Filter
Delete	CAN	Message	Filter
Delete	All	CAN	Message	Filters

	

And	 yes,	 there	 are	 multiple	 possibilities	 of	 extending	 this	 program	 toward	 a	 really
professional	 version.	 However,	 what	 the	 Arduino	 cannot	 provide	 is	 a	 professionally
looking	graphical	user	 interface,	and	 this	 is	where	 the	existing	USB	connection	 to	a	PC
opens	the	door	to	more	possibilities.

	



4.3	CAN	Network	Monitoring	under	Windows

While	 programming	 the	Arduino	 can	 be	 exciting	 (especially	 since	 everything	works	 so
smoothly),	the	real	fun	comes	when	you	can	extend	the	Arduino’s	reach	to	a	PC	running
Windows.

	

Note:	My	apologies	 to	all	Mac	and	LINUX	users	 for	bringing	a	Windows	programming
example,	 but	 there	 is	 no	 better	 programming	 than	 using	 C#	 under	 Microsoft’s	 Visual
Studio.	 I	 have	 enjoyed	 programming	 under	 OS-X	 and	 LINUX,	 but	 when	 it	 comes	 to
producing	quick	and	effective	programming	examples,	I	prefer	to	stay	with	Visual	Studio.
However,	the	experienced	programmer	should	be	able	to	replicate	the	functionality	of	the
serial	monitor.

	

To	 learn	 more	 about	 serial	 port	 programming	 (RS-232	 and	 USB)	 under	 LINUX	 see
http://www.teuniz.net/RS-232/.	I	consider	this	by	far	the	most	professional	application	for
serial	ports	under	LINUX.	It	also	suits	Windows	applications	but	 is	primarily	meant	 for
compilers	inferior	to	Visual	Studio	and/or	for	programming	embedded	systems.

	

In	 the	 following	we	assume	 that	you	have	 the	Arduino	USB	driver	 installed	under	your
Windows	machine.	 The	 driver	 is	 automatically	 installed	with	 the	Arduino	 development
environment.

	

As	I	have	mentioned	in	my	note,	I	am	using	Microsoft’s	Visual	Studio	2012,	and	I	have
designed	 the	 following	 GUI	 that	 may	 look	 very	 familiar	 to	 the	 Arduino	 developer.
Basically,	this	very	simple	program	is	a	replica	of	the	Arduino	serial	monitor.

	



	

The	screen	elements	are	a	textbox	for	data	entry,	a	command	button	to	send	the	entry	to
the	Arduino,	 and	 another	 larger	 text	 box	 to	 display	 the	 data	 coming	 from	 the	Arduino.
Last,	 but	 not	 least,	 there	 is	 a	 combobox	 displaying	 all	 available	USB	COM	ports	 (It	 is
your	task	to	determine	the	proper	USB	port;	there	is	no	auto	detection).

	

What	the	program	does	not	provide	is	the	baud	rate	settings,	which	has	been	hard-coded	as
9600	 baud	 into	 the	 program	 but	 can	 be	 modified	 easily.	 Of	 course,	 this	 is	 not	 the
professional	way	of	doing	it,	but,	after	all,	this	programming	sample	serves	as	an	example
on	reading/sending	messages	from/to	the	Arduino.	In	regards	to	the	envisioned	extended
CAN	network	monitoring	and	diagnostics	 tool,	you	will	need	more	and	different	 screen
elements,	and	the	baud	rate	settings	should	be	part	of	that	project.

	

All	 screen	 elements	 in	 this	 project	 stick	with	 their	 default	 settings,	 however	with	 a	 few
exceptions	as	shown	in	the	following:

	

Element														Name																												Modified	Property																												Events

Form																												Form1																												Text	=	“Serial	Monitor”														-

Text																												txtSend														-																																																								-

Text																												txtReceived														Multiline	=	True

																																										Scrollbars	=	Vertical

Button																												btnSend														Text=”Send”																																										Click

ComboBox														cboCOMPort														-																																																							



SelectedIndexChanged

	

The	following	shows	the	C#	program	listing	(the	entire	program	is	within	the	form):

	
using	System;

using	System.Collections.Generic;

using	System.ComponentModel;

using	System.Data;

using	System.Drawing;

using	System.Linq;

using	System.Text;

using	System.Threading.Tasks;

using	System.Windows.Forms;

using	System.IO;

using	System.IO.Ports;

using	System.Threading;

	

namespace	USBAccess

{

public	partial	class	Form1	:	Form

{

//	Constants

public	const	int	REC_BUFFER_SIZE	=	500;

public	const	int	READ_TIMEOUT	=	500;

public	const	int	WRITE_TIMEOUT	=	500;

public	const	int	REC_BUFFER_FILLTIME	=	80;

	

public	static	SerialPort	_serialport;

	

public	Form1()

{

InitializeComponent();

	

string[]	sPorts	=	new	string[20];

sPorts	=	SerialPort.GetPortNames();

	

for	(int	nIndex	=	0;	nIndex	<	sPorts.Length;	nIndex++)



cboCOMPort.Items.Add(sPorts[nIndex]);

	

}//	end	Form1

	

//	SetTextDeleg

//	––––-

private	delegate	void	SetTextDeleg(string	text);

	

//	sp_DataReceived

//	–––––-

void	sp_DataReceived(object	sender,	SerialDataReceivedEventArgs	e)

{

//	Set	the	receive	buffer	size

char[]	sRecData	=	new	char[REC_BUFFER_SIZE	+	1];

	

	

//	Give	the	hardware	some	time	to	receive	the	whole	message

Thread.Sleep(REC_BUFFER_FILLTIME);

	

try

{

int	nBytes	=	_serialport.BytesToRead;

	

//	Read	the	string

int	nIndex;

	

for	(nIndex	=	0;	nIndex	<	nBytes;	nIndex++)

{

int	nRec	=	_serialport.ReadByte();

sRecData[nIndex]	=	(char)nRec;

	

}//	end	for

	

sRecData[nIndex]	=	(char)0;	//	Terminate	the	string

string	sStr	=	new	string(sRecData);

	

//	In	case	of	RS232,	this	line	causes	a	timeout,

//	meaning	no	data	is	being	received



this.BeginInvoke(new	SetTextDeleg(si_DataReceived),

new	object[]	{	sStr	});

}

catch	(TimeoutException)	{	}

	

}//	end	_serialport_DataReceived

	

//	si_DataReceived

								//	–––––-

private	void	si_DataReceived(string	data)

{

if(txtReceived.TextLength	==	0)

txtReceived.Text	=	data;

else

txtReceived.Text	+=	“\n\r”	+	data;

	

//	Set	cursor	to	end	of	screen											

txtReceived.SelectionStart	=	txtReceived.TextLength;

txtReceived.ScrollToCaret();

txtReceived.Refresh();

	

}//	end	si_DataReceived

	

//	btnSend_Click

//	––––—

private	void	btnSend_Click(object	sender,	EventArgs	e)

{

//	Make	sure	the	serial	port	is	open	before	trying	to	write

try

{

if	(!(_serialport.IsOpen))

_serialport.Open();

	

if	(txtSend.Text.Length	>	0)

_serialport.Write(txtSend.Text);

else

MessageBox.Show(“Please	enter	a	message	to	be	sent.”,

“Attention!”);



}

catch	(Exception	ex)

{

MessageBox.Show(“Error	opening/writing	to	serial	port.”	+

																																																																																																		ex.Message,	“Error!”);

}

	

}//	end	btnSend_Click

	

		//	Event	:	cboCOMPort_SelectedIndexChanged

//––––––––––––––

private	void	cboCOMPort_SelectedIndexChanged(object	sender,

EventArgs	e)

{

//	Define	the	serial	port	for	the	USB	device

_serialport	=	new	SerialPort(cboCOMPort.SelectedItem.ToString(),

																																																																						9600,	Parity.None,	8,	StopBits.One);

_serialport.Handshake	=	Handshake.None;

	

//	Set	the	read/write	timeouts

_serialport.ReadTimeout	=	READ_TIMEOUT;

_serialport.WriteTimeout	=	WRITE_TIMEOUT;

_serialport.ReadBufferSize	=	REC_BUFFER_SIZE;

_serialport.Open();

	

_serialport.DataReceived	+=

new	SerialDataReceivedEventHandler(sp_DataReceived);

	

}//	end	cboCOMPort_SelectedIndexChanged

	

}//	end	class

	

}//	end	namespace

	

Reference:	The	 handling	 of	 the	USB	 port	 is	 based	 on	 an	 article	 by	 Ryan	 Alford	 (with
added	content	by	Arjun	Walmiki,	Gregory	Krzywoszyja	and	Mahesh	Chand)	at:

http://www.c-sharpcorner.com/uploadfile/eclipsed4utoo/communicating-with-serial-port-
in-C-Sharp/



	

At	 program	 start,	 the	 user	 first	 needs	 to	 select	 the	 applicable	 USB	 COM	 port,	 which
initializes	the	port	(SelectedIndexChanged	event).

	

Beyond	that,	the	program	functions	as	a	simple	USB	terminal:	Messages	are	typed	in	the
top	 text	 box	 and	 sent	 by	 clicking	 on	 the	 Send	 command	 button.	 The	 larger	 text	 box
displays	the	received	data.

	

The	 following	 shows	 screen	 shots	 taken	 through	 a	 session	 with	 our	 Arduino	 CAN
Network	Monitoring	and	Diagnostics	program:

	

	

In	this	case,	we	sent	two	CAN	Messages	with	the	same	ID	(0100)	but	different	data.	Next,
we	 received	 to	 messages	 through	 my	 standard	 test	 configuration	 (i.e.	 USB-to-CAN
gateway	with	Windows	monitoring	tool	as	the	second	CAN	node).

	

	



	

The	previous	two	screen	shots	serve	as	evidence	that	the	messages	sent	to/from	the	serial
monitor	via	the	Arduino	CAN	Shield	were	received/transmitted	as	expected.

	



5	Conclusion

At	 this	 point,	 after	 having	 accomplished	 all	 the	 necessary	 steps,	 it	 is	 easily	 possible	 to
develop	 a	 professional,	 full-fledged	 CAN	 Network	 Monitoring,	 Diagnostics,	 and
Simulation	Software.

	

The	groundwork	has	been	laid	for	all	necessary	hardware	and	software	components:

	

1.	 A	USB-to-CAN	Gateway	to	provide	CAN	connectivity	to	the	host	system
2.	 A	communication	protocol	between	the	USB-to-CAN	and	the	host	system
3.	 A	graphical	user	interface	(GUI)	for	the	presentation	of	the	CAN	network

	

For	 more	 technical	 information	 and	 articles	 and	 to	 contact	 me,	 see	 my	 website	 at
http://copperhilltech.com.





Appendix	–	Recommended	Literature

There	is	more	than	plenty	and	valuable	literature	available	on	the	Arduino,	but,	being	an
experienced	programmer,	the	one	and	only	work	I	read	was:

	

Programming	Arduino

Getting	Started	with	Sketches

By	Simon	Monk

ISBN	978-0-07-178422-1

	

Also	recommended	for	providing	more	background	information:

	

A	Comprehensible	Guide	to	Controller	Area	Network

By	Wilfried	Voss

ISBN	978-0976511601

	

A	Comprehensible	Guide	to	J1939

By	Wilfried	Voss

ISBN	978-0976511632

	

All	 works	 are	 available	 through	 Amazon.com	 and	 all	 their	 international	 online	 stores,
Barnes	&	Noble,	Abebooks.com	 and	 all	 their	 international	 online	 stores,	 and	 any	 other
good	book	store.

	

	


	From the Author
	About the Author
	Contact the Author
	1. Introduction to Controller Area Network
	2. Prototyping Hardware and its Variants
	3. Arduino CAN Shields
	4. Arduino CAN Sketches
	5 Conclusion
	Appendix – Recommended Literature

